

Sea Level Rise in California Policy in Practice

CMANC Annual Winter Meeting January 17, 2020

> Presenter: Aaron Holloway, PE aholloway@moffattnichol.com

State Sea Level Rise Guidance Documents

Long-term Planning Documents

- Port Master Plan
- General Plan
- Local Coastal Program

Assembly Bill 691

Tidelands SLR assessment

Coastal zone projects

Coastal Development Permit

Interpretive Guidelines for Addressing Sea Level Rise in Local Coastal Programs and Coastal Development Permits

Original Guidance unanimously adopted – August 12, 2015 Science Update unanimously adopted – November 7, 2018

State of California Sea-Level Rise Guidance

2018 UPDATE

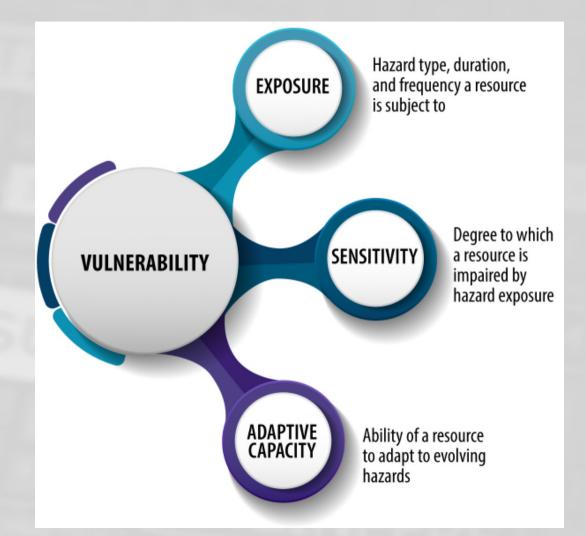
Recent SLR experience in Southern California

Morro Bay GP/LCP, Morro Bay

SCALE OF WORK KEY:

REGIONAL PROJECT CITY

ABBREVIATION KEY:


EIR: Environmental Impact Report GP: General Plan HMP: Hazard Management Plan LCP: Local Coastal Program SLR: Sea Level Rise VA: Vulnerability Assessment

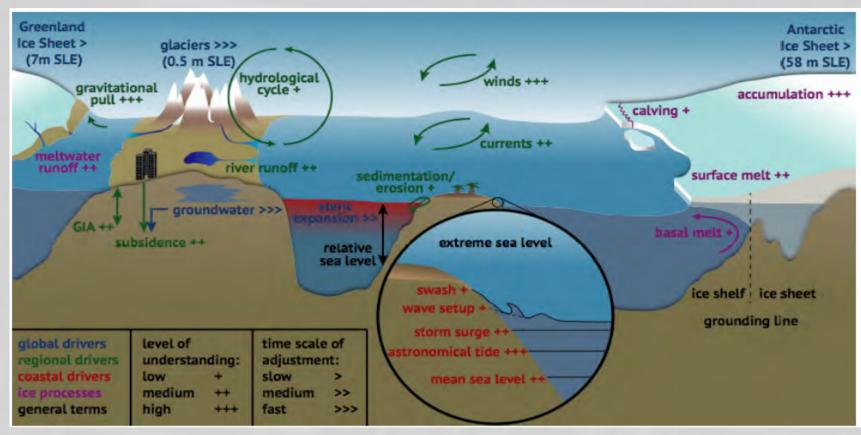
Pismo Beach SLR VA, Pismo Beach Garden Street Hotel SLR VA, Santa Barbara McGrath State Beach SLR Study, Ventura CA Venice LCP, Venice Beach Belmont Beach & Aquatics Center SLR Evaluation, Long Beach Seal Beach LCP, Seal Beach SLR Consulting Services, Long Beach Hellman Ranch Gas Plant SLR VA, Seal Beach Huntington Beach Desal SLR VA, Huntington Beach Huntington Beach SLR Assessment, Huntington Beach Newport Beach SLR VA, Newport Beach Banning Ranch SLR VA, Newport Beach City of Avalon LCP, Avalon Newport Bay SLR VA, Newport Beach Doheny State Beach HMP, Dana Point Dana Point SLR VA/LCP, Dana Point Dana Point Harbor SLR VA, Dana Point San Clemente SLR VA, San Clemente San Onofre State Beach HMP, San Onofre Carlsbad SLR VA, Carlsbad Coast Hwy 101 Pump Station SLR VA, Encinitas Los Angeles - San Diego - San Luis Obispo Rail SLR Study, San Diego De Anza SLR Study, San Diego Mission Bay Program EIR SLR Evaluation, San Diego San Diego Association of Governments Regional SLR Study, San Diego San Diego Association of Governments SLR Adaptation Plan, San Diego Strategic Environmental Res/Dev Program SLR Assessment, San Diego Coronado Yacht Club SLR Study, Coronado

Sea Level Rise Vulnerability Assessment (Step 1)

Key objectives:

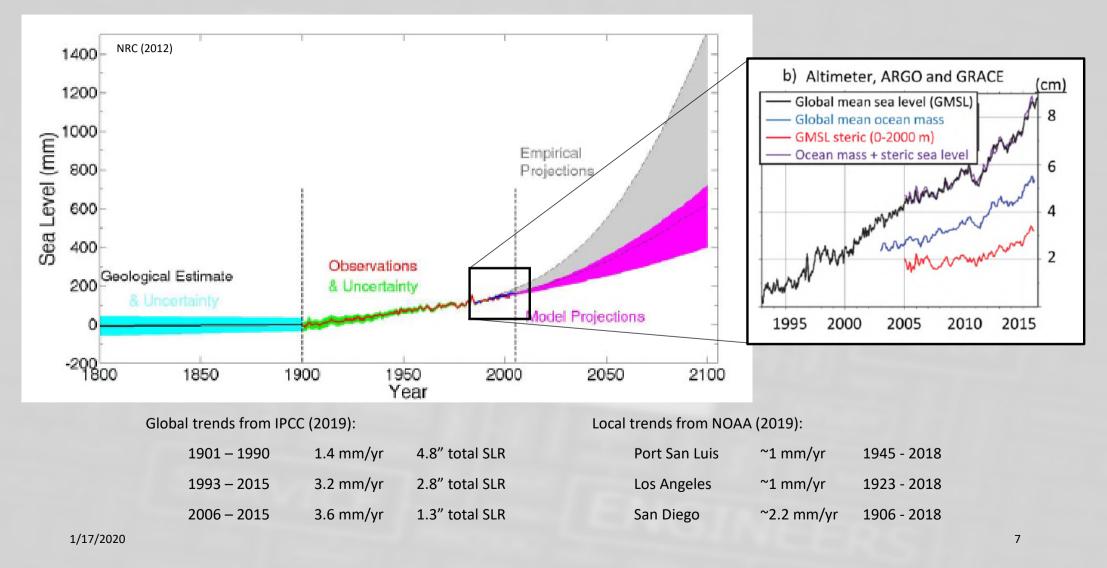
- Identify hazards of concern (storm and non-storm)
- Identify thresholds or tipping points where SLR becomes an issue
- Evaluate risk based on probability of these thresholds
- Prioritize adaptation strategies according to risk and timing

Adaptation Strategies (Step 2)


Project Level

- What to do now or in the future?
- Guided by cost-benefit analysis and permitting process
- Design measures to build in adaptive capacity
- Adaptation plan to describe potential responses to future hazards

Planning Level


- Community outreach
- Land use designations
- Policies for existing & new development
- Trigger based adaptation strategies
- Monitoring

Sea Level Rise – Overview of regional and global factors

Global and regional factors contributing to sea level rise (IPCC, 2019)

Historic Sea Level Rise

2018 OPC Guidance – SLR projections for California

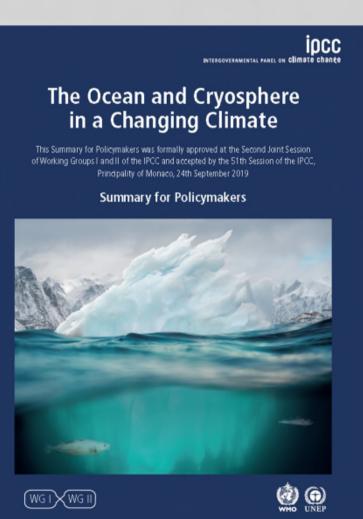
Important concepts:

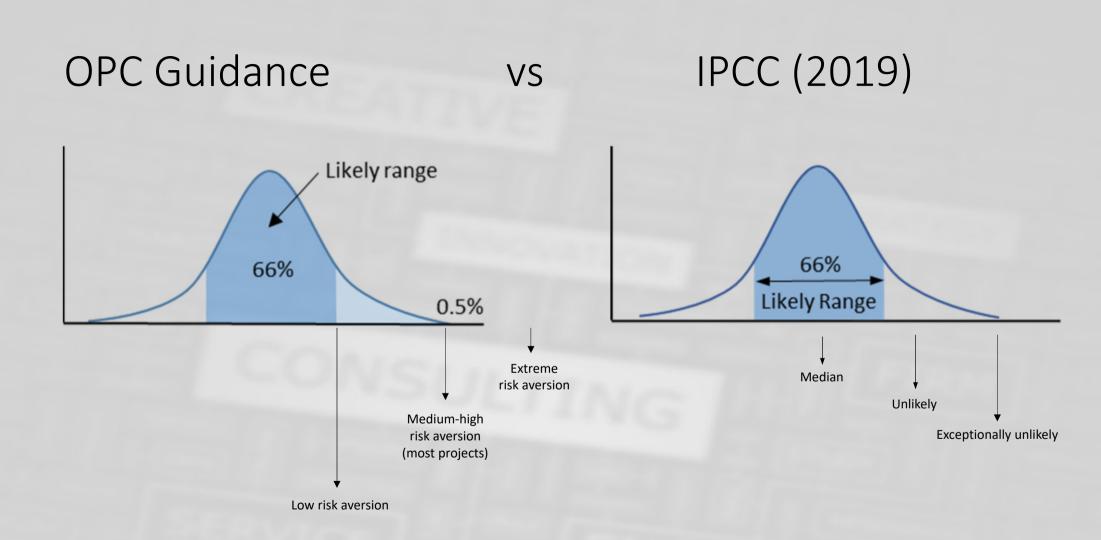
- Probability of occurrence
- Design life/planning horizon
- **Risk tolerance**

"Recommended" risk aversion categories:

- Low (17% probability)
- Med-high (0.5% probability) •
- Extreme (H++ scenario) ۲

Why is "medium – high" a single category?

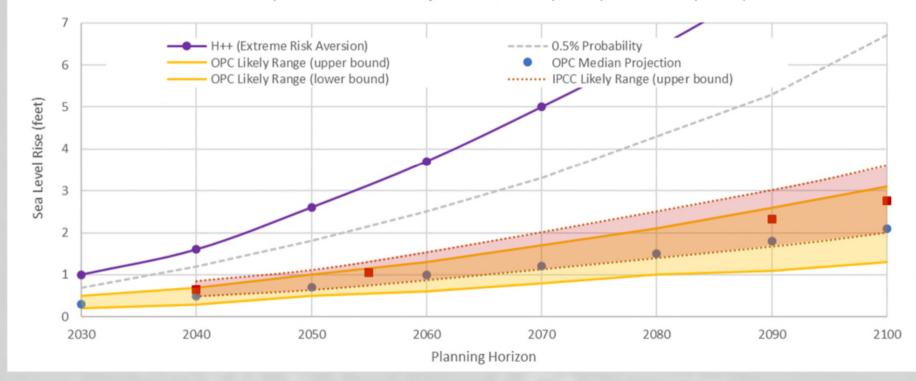

		Probabil							
		MEDIAN	LIKELY RANGE			1-IN-20 CHANCE	1-IN-200 CHANCE	H++ scenario (Sweet et al.	
		50% probability sea-level rise meets or exceeds	66% probability sea-level rise is between		rise	5% probability sea-level rise meets or exceeds	0.5% probability sea-level rise meets or exceeds	2017) *Single scenario	
					Low Risk Aversion		Medium - High Risk Aversion	Extreme Risk Aversion	
High emissions	2030	0.3	0.2	-	0.5	0.6	0.7	1.0	
	2040	0.5	0.4	-	0.7	0.9	1.2	1.7	
	2050	0.7	0.5	-	1.0	1.2	1.8	2.6	
Low emissions	2060	0.8	0.5	-	1.1	1.4	2.2		
High emissions	2060	1.0	0.7	-	1.3	1.7	2.5	3.7	
Low emissions	2070	0.9	0.6	-	1.3	1.8	2.9		
High emissions	2070	1.2	0.8	-	1.7	2.2	3.3	5.0	
Low emissions	2080	1.0	0.6	-	1.6	2.1	3.6		
High emissions	2080	1.5	1.0	- 2.2		2.8	4.3	6.4	
Low emissions	2090	1.2	0.7	-	1.8	2.5	4.5		
High emissions	2090	1.8	1.2 - 2.7		2.7	3.4	5.3	8.0	
Low emissions	Z100	1.3	0.7		2.1	3.0	5.4		
High emissions	Z100	2.2	1.3	-	3.2	4.1	6.7	9.9	
Low emissions	2110*	1.4	0.9	-	2.2	3.1	6.0		
High emissions	Z110*	2.3	1.6	-	3.3	4.3	7.1	11.5	
Low emissions	2120	1.5	0.9	-	2.5	3.6	7.1		
High emissions	2120	2.7	1.8	-	3.8	5.0	8.3	13.8	
Low emissions	2130	1.7	0.9	-	2.8	4.0	8.1		
High emissions	2130	3.0	2.0	-	4.3	5.7	9.7	16.1	
Low emissions	Z140	1.8	0.9	-	3.0	4.5	9.2		
High emissions	Z140	3.3	2.2	-	4.9	6.5	11.1	18.7	
Low emissions	2150	1.9	0.9	-	3.3	5.1	10.6		
High emissions	2150	3.7	2.4	-	5.4	7.3	12.7	21.5	


8

Oceans & Cryosphere in a Changing Climate (IPCC, 2019)

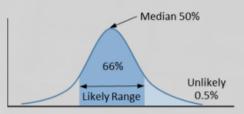
- Updated global SLR projections
- Likely range of SLR similar to OPC, revised upward since previous IPCC report (AR5)
- H++ scenario excluded from projections
 - DeConto & Pollard (2016) assumption related to MICI "remains unproven and characterized by deep uncertainty"
 - Deep uncertainty: Limited knowledge of processes & lack of agreement in scientific community
- Probability (likelihood) language

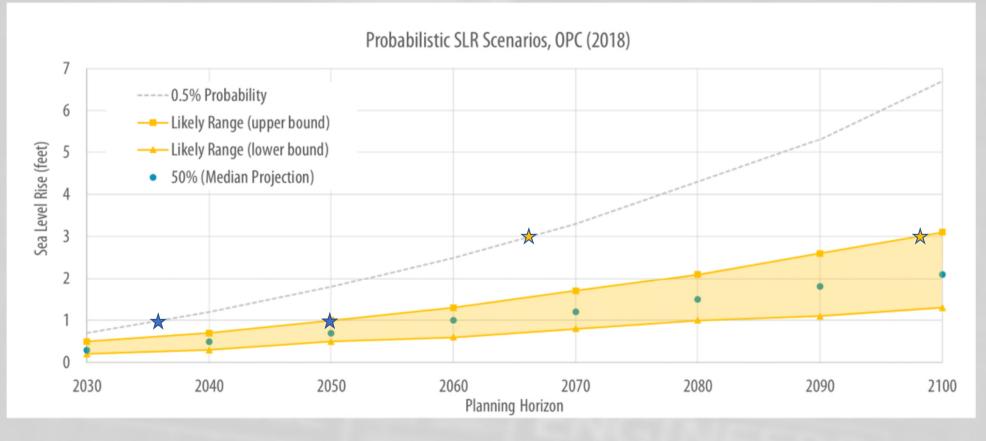
Likelihood Language	Statistical Level (assessing change)	Statistical Range (assessing range)			
Virtually certain	greater than 99%				
Extremely likely	greater than 95%				
Very likely	greater than 90%	5-95% range			
Likely	greater than 66%	17-83% range			
More likely than not	greater than 50%	25-75% range			
About as likely as not	33-66%				
Unlikely	less than 33%	<17% and >83% (both tails)			
Very unlikely	less than 10%	<5% and >95% (both tails)			
Extremely unlikely	less than 5%				
Exceptionally unlikely	less than 1%				



OPC Guidance

VS


IPCC (2019)


Comparison of SLR Projections, OPC (2018) and IPCC (2019)

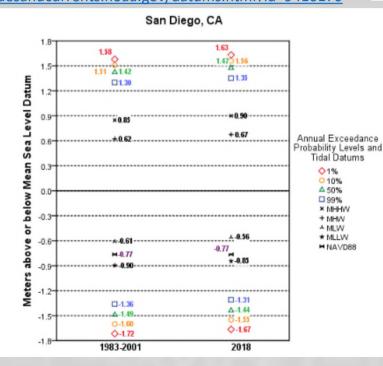
What is your risk tolerance and design life?

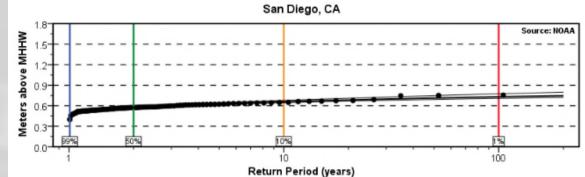
Default: "medium-high" risk aversion and 75-100 years for most development

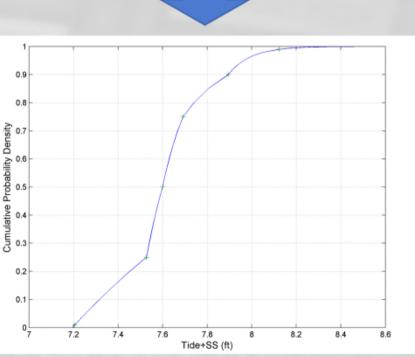
Joint Probability – SLR is only one piece of the puzzle

- Non-storm hazards
 - Tidal flooding
 - Chronic erosion
- Coastal storm hazards
 - Extreme water levels
 - Wave runup/impact forces
 - Storm erosion
- Riverine flooding
- Groundwater table
- Tsunami

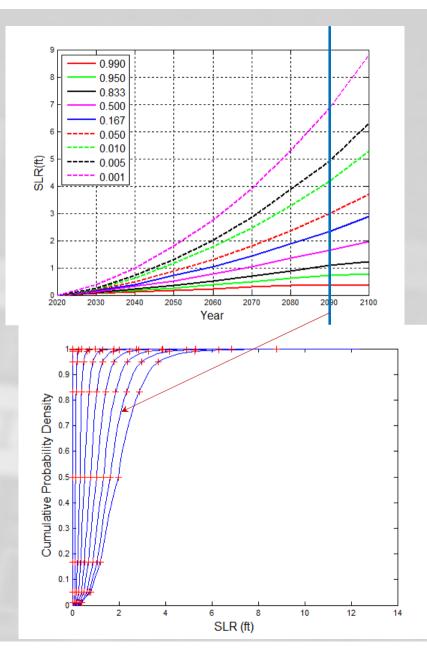
Typical example: New development

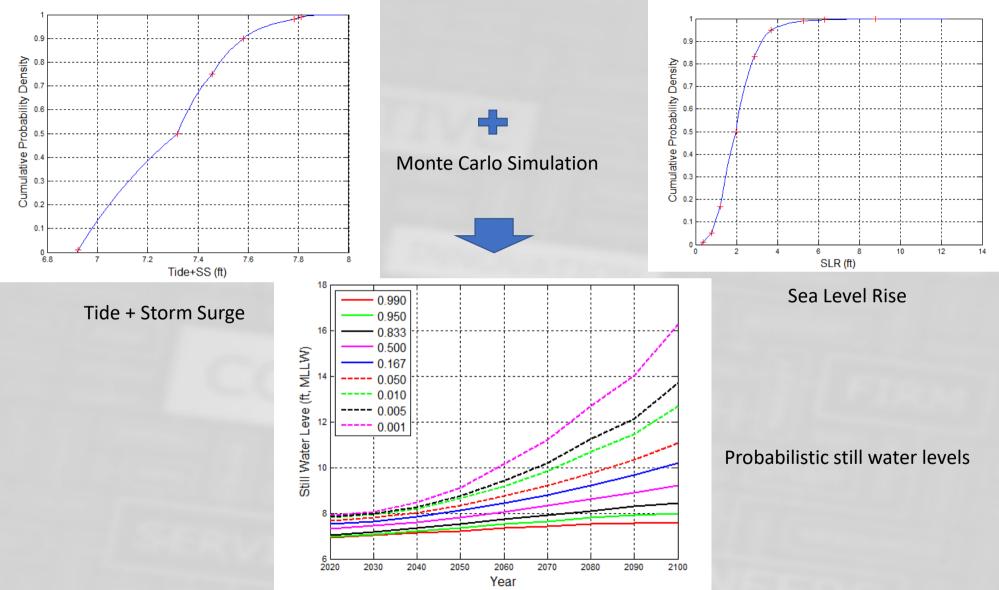

- 75-100 year design life
- Medium-high risk aversion (0.5% probability)


What if....100-yr coastal storm occurs? Joint probability: P = 0.005 x 0.01 = 0.00005 1 in 20,000 chance


What if.....extreme tsunami occurs, at high tide?

NOAA data provides daily and extreme water levels in San Diego Bay





Sea Level Rise

15

Summary Table – Still Water Level exceedance versus site elevation and time horizon

		8	9	10	11	12	13	14	15	16	17	18	19	20
Horizon	2030	14.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	2040	49.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	2050	83.0%	1.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	2060	95.2%	10.7%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	2070	96.8%	35.8%	2.3%	0.3%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	2080	97.9%	62.2%	9.9%	1.5%	0.4%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	2090	98.5%	79.4%	24.7%	4.6%	1.3%	0.4%	0.2%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%
	2100	98.7%	87.1%	44.5%	13.5%	3.6%	1.4%	0.6%	0.3%	0.2%	0.1%	0.0%	0.0%	0.0%

Site Elevation in ft, MLLW

Note, this analysis could be augmented to account for wave setup and runup along the project site.

Time

Asset vs System Resilience

Interconnectivity of systems

- Federal infrastructure (breakwater)
- Local & regional infrastructure (wharves, docks, roads)
- Private (utilities, terminals)

Who is responsible for the most significant vulnerability?

Regional coordination & consistency become very important

"Near-term" Adaptation Strategies (1-2 ft SLR)

- Identify SLR hazard zones
- Public outreach and education
- Port Master Plan/Local Coastal Program Updates
 - Apply consistent planning & development policies
- Capital Improvement Plan (CIP)/Operations & Maintenance programs
 - Incorporate SLR probability and coastal hazards into existing budgeting & planning process
 - Parcel scale SLR adaptation strategies can be incorporated into a variety of projects
- Support Regional Adaptation Planning
 - Local Hazard Mitigation Plan (LHMP) and Coastal Regional Sediment Management Plan (CRSMP)

Challenges in applying the guidance

- Design life & risk tolerance decisions
- Specific strategies to address improbable and long-term vulnerabilities
- Defining key terms:
 - existing development, coastal dependent uses, etc.
- Policies addressing existing development (permitted or not)
- Large scale adaptations impractical for small-scale projects & Cities
 - Need collaboration & partnerships among cities & agencies

Suggestions from lessons learned

- Apply the science, not the guidance
- Asset Managers:
 - Establish expected design life for range of facilities
 - Establish acceptable risk tolerance for range of facilities
- Asset versus system resilience
 - Regional coordination & consistency
- Integrate adaptation into existing management programs
 - Capital Improvement Plan
 - Operations & Maintenance

moffatt & nichol

INNOVATION

Creative People, Practical Solutions.®

THANK YOU!

moffattnichol.com