Project Incorporation of Sea Level Rise – City of Newport Beach Approach for Balboa Islands, City of Newport Beach, California

Ying Poon, – Everest International Consultants, Inc.

CMANC Annual Winter Meeting January 16 - 18, 2013 San Pedro, California

The Team

Professor Brett Sanders

University of California, Irvine

Mr. Randy Mason

URS Corporation

• Mr. Robert Stein City of Newport Beach

Background

- Aging seawalls in need of repair
- Both islands subject to flooding during high tide and high wave events
- Increased flood frequencies and damages with anticipated sea level rise
- Newport Beach seeks alternatives for repairing or replacing seawall

Overview

- Existing Conditions
 - Seawall cap and house first floor elevation survey
 - Structural inspection
- Incorporation of Sea Level Rise
 - Selection of sea level rise scenarios
 - Flood modeling
 - Tidal dynamic and wave overtopping
- Mitigation Alternatives

Seawall Cap Extension

Cracks, Corrosion, Repairs

Sidewalk Separation from Seawall

Distressed Bulkhead Cap

Seawall Condition

- Seawall Age: 73-82 years
- Overall Condition: Holding together well with universal cracking along with some concrete spawling and some evidence of corroding rebar.
- Estimated Useful Life: 10-25 years

Waves Splashing over the Balboa Island Seawall (December 22, 2010)

Pumping Flood Water Back into the Bay (December 22, 2010)

Flooding at Balboa Island Ferry Landing (2005 Flood Event)

Flood Inundation Modeling

- Hydrodynamic model based on hydraulic principles
- Finite volume model based on the shallow water equation
- Account for both tide and wave overtopping
- Overtopping flows spread in accordance with local topography and the effects of gravity and friction

Model Domain – shaded areas

Fine Model Grid of Island Region

Top of Seawall and House First Floor Elevations Survey (ft)

Tide Elevations, and Trends of Mean, Maximum, 10% and 1% Annual Exceedance-Probability Tide Heights, Los Angeles, 1923 – 2009

EVEREST

Sea Level Rise Projections

Projections of Mean Sea Level and Extreme Tide Heights Through Year 2100

Wave Overtopping

$$q_{wo} = \begin{cases} q_{wo}^{\max} \begin{pmatrix} h - h_{q0} \\ \hline h_{wall} - h_{q0} \end{pmatrix} & \text{if} \quad h_{q0} \leq h \leq h_{wall} \\ 0 & \text{otherwise} \end{cases}$$

Where

- q_{wo}^{max} = maximum rate of wave overtopping based on all possible water levels
- h_{wall} = height of the wall
- h_{q0} = tide height corresponding to the onset of overtopping

Flood Inundation Modeling Scenarios

- Water Level
 - 1% and 10% extreme tide
 - Present and with sea level rise (Year 2025, 2050, 2100)
- With and Without Waves
- Seawall Elevation
 - Existing
 - With 6-inch cap extension
 - New seawall at Elev. 10.0' MLLW

Flood Inundation Modeling Scenarios

Scenario	SEAWALL CONDITION	Year	Sea Level Rise From 2010	TIDE HEIGHT (ANNUAL EXCEEDANCE PROBABILITY)	Wave Scenario	
1	Existing Conditions	2010	NA	10%	No Waves	
2	Existing Conditions	2010	NA	10%	Wind Waves	
3	Existing Conditions	2010	NA	10%	Ocean Swell	
4	Existing Conditions	2010	NA	1%	Wind Waves	
5	Existing Conditions	2025	0.40 ft	10%	Wind Waves	
6	Existing Conditions	2025	0.40 ft	10%	Ocean Swell	
7	Existing Conditions	2025	0.40 ft	1%	Wind Waves	
8	Existing Conditions	2050	1.38 ft	10%	No Waves	
9	Existing Conditions	2050	1.38 ft	1%	No Waves	
10	Existing Conditions	2100	4.60 ft	10%	No Waves	
11	6-inch extension	2010	NA	1%	Wind Waves	
12	6-inch extension	2025	0.40 ft	1%	Wind Waves	
13	10 ft (MLLW) seawall	2010	NA	1%	Wind Waves	
14	10 ft (MLLW) seawall	2025	0.40 ft	1%	Wind Waves	
15	10 ft (MLLW) seawall	2050	1.38 ft	1%	Wind Waves	
16	10 ft (MLLW) seawall	2050	1.38 ft	10%	Wind Waves	
17	10 ft (MLLW) seawall	2100	4.60 ft	1%	Wind Waves	

Existing Seawall, Year 2010, 10% Tide, No Waves

EVEREST

Existing Seawall, Year 2010, 10% Tide, Swell

6059250 6059500 6059750 6060000 6060250 6060500 6060750 6061000 6061250 6061500 6061750 6062000 6062250 6062500 606

Equilibrium (bathtub) Model vs. Hydrodynamic Model

Equilibrium

- Efficient, rapid implementation
- Used for large SLR assessments
- Connectivity?
- Instantaneous filling

Reproduced from Gallien and Sanders

Hydrodynamic

- Responsive to connectivity
- Wall may be explicitly resolved
- Temporal variability

Same Scenario – Equilibrium (Bathtub) Model

Equilibrium (bathtub) Model vs. Hydrodynamic Model

• Equilibrium

• Hydrodynamic

Existing Seawall, Year 2025, 1% Tide, Wind Waves

EVEREST

6 inch Cap Extension, Year 2025, 1% Tide, Wind Waves

Existing Seawall, Year 2050, 10% Tide, No Waves

Seawall at +10 ft MLLW, Year 2050, 10% Tide

Year 2100, +10 ft MLLW Seawall

Scenario 17: Year 2100 / Tide p=01% / Wind Waves / 10ft Seawall

6059250 6059500 6059750 6060000 6060250 6060500 6060750 6061000 6061250 6061500 6061750 6062000 6062250 6062500 6062750 6063000 6063250 6063500

Flood Depth, Parcel and Building Impacts

Scenario	Year	TIDE HEIGHT (ANNUAL EXCEEDANCE PROBABILITY)	WAVE SCENARIO	Average * Flood Depth (ft)	Impacted** Parcels (number)	Parcels Impacted (%)	Impacted*** Buildings (number)	IMPACTED BUILDINGS (%)					
Existing Condition Scenarios													
1	2010	10%	No Waves	0.26	61	4.0	3 ± 2	0.2					
2	2010	10%	Wind Waves	0.26	61	4.3	3 ± 2	0.2					
3	2010	10%	Ocean Swell	0.29	514	36.5	24 ± 5	1.7					
4	2010	1%	Wind Waves	0.36	324	23.0	22 ± 4	1.5					
5	2025	10%	Wind Waves	0.48	681	48.3	66 ± 7	4.7					
6	2025	10%	Ocean Swell	0.79	1,176	83.4	235 ± 13	16.6					
7	2025	1%	Wind Waves	1.16	1,179	83.6	420 ± 14	29.8					
8	2050	10%	No Waves	1.84	1,410	100.0	894 ± 17	63.4					
9	2050	1%	No Waves	2.15	1,410	100.0	1047 ± 15	74.3					
10	2100	10%	No Waves	5.02	1,410	100.0	1410 ± 1	100.0					
6-inch Extension Scenarios													
11	2010	1%	Wind Waves	0.03	0	0.0	0	0.0					
12	2025	1%	Wind Waves	0.12	12	0.9	0-1	<0.1					
10-foot Seawall Scenarios													
13	2010	1%	Wind Waves	0	0	0.0	0	0.0					
14	2025	1%	Wind Waves	0	0	0.0	0	0.0					
15	2050	1%	Wind Waves	0	0	0.0	0	0.0					
16	2050	10%	Wind Waves	0	0	0.0	0	0.0					
17	2100	1%	Wind Waves	5.30	1,410	100.0	1410 ± 1	100.0					

Protection Option: Seawall Extension

- Extend existing cap 6 inches
 Remove existing cap and replace with 6-inch taller cap
- 3. Add sandbags or geotextile bags

New Seawall – Option 1 H-piles and Concrete Wall (Lag) Panels

New Seawall – Option 2 Steel Sheet Pile Bulkhead

Conceptual Seawall Replacement Implementation Plan

Two Options to Raise the Launch Ramp at Balboa Island Ferry Landing

Option 1 Street Approach Ramp with Diverted Walking Path

Balboa Island Ferry Modification

Summary

- Aging seawalls at Balboa Island and Little Balboa Island are in need of repair
- A good example of how sea level rise can be incorporated in alternative development

Recommendations

1. 2011-2020

- a. Review of codes, standards & policies
- b. Implement a community awareness program
- c. Establish new lowest floor elevation
- d. Harbor-wide planning for new seawalls at minimum 10 feet MLLW

e. Balboa Islands seawall design and permitting

- f. Design for new ferry boat landing
- g. Assessment District Formation

Recommendations

2.2021-2035

- a. Replace seawalls w/ 10' high seawalls
- b. Extend seawalls as needed while new seawalls are being constructed
- 3.2050-2060
 - a. Extend new seawalls if necessary to 13
 or 14 feet MLLW
 - b. Possible groundwater dewatering system or other means to address groundwater

Thank You

